In my teaching, I try to strike a careful balance between a substantive and a methodological focus combining rigorous methods training with cutting edge theoretical and empirical questions. I believe that the quickly rising demand for quantitative methods training for undergraduate and graduate students, in particular, is best met by combining it with hands-on research. This ensures that methods are taught in the context where they are applied and students not only master the most suitable techniques to address specific empirical questions but also are fully aware of their relative strengths and weaknesses. In the past years, ever larger, more disaggregate, often geo-coded empirical records have become available that—at least in theory—enable us to study societal processes at increasingly fine-grained resolution. Students have to be equipped to work with these data making full use of their potential while avoiding possible fallacies.

I currently primarily teach courses related to the SEDS data science degree at the University of Konstanz. They cover both relevant substantive and methodological aspects and are specifically designed to lead students close to the cutting-edge of research in computational social science. In addition, I also offer specialized methodology courses as part of the graduate curriculum at the Graduate Institute in Geneva. These sessions on big data analysis and on agent-based computational modeling are offered as block courses.

Please refer to the specific semesters listed below for an overview of past and current course; you may also download a detailed syllabus for each class:

Spring Term 2018
Fall Term 2017
Spring Term 2017
Fall Term 2016
Previous Semesters